Let the given depth be h.
Pressure at the given depth, p=80.0atm=80×1.01×105Pa
Density of water at the surface, ρ1=1.03×103kg/m−3
Let ρ2 be the density of water at the depth h.
Let V1 be the volume of water of mass m at the surface.
Let V2 be the volume of water of mass m at the depth h.
Let △V be the change in volume.
△V=V1−V2
=m[(1/ρ1)−(1/ρ2)]
∴ Volumetric strain =△V/V1
=m[(1/ρ1)−(1/ρ2)]×(ρ1/m)
△V/V1=1−(ρ1/ρ2) .....(i)
Bulk modulus, B=pV1/△V
△V/V1=p/B
Compressibility of water =(1/B)=45.8×10−11Pa−1
∴△V/V1=80×1.013×105×45.8×10−11
=3.71×10−3 .....(ii)
For equations (i) and (ii), we get:
1−(ρ1/ρ2)=3.71×10−3
ρ2=1.03×103/[1−(3.71×10−3)]
=1.034×103kgm−3
Therefore, the density of water at the given depth (h) is 1.034×103kgm−3.