What is the formula of cos4x?
Find the formula for cos4x.
cos4x=cos2x+2x⇒cos4x=cos2x.cos2x-sin2x.sin2x[∵cos(a+b)=cosa.cosb-sina.sinb]⇒cos4x=2cos2x-1.2cos2x-1-(2sinx.cosx)(2sinx.cosx)[∵sin2x=2sinx.cosx]⇒cos4x=2cos2x-12-(2sinx.cosx)2∵cos2x=2cos2x-1⇒cos4x=4cos4x-4cos2x+1-(4sin2x.cos2x)⇒cos4x=4cos4x-4cos2x+1-41-cos2x.cos2x⇒cos4x=8cos4x-8cos2x+1
Hence, the formula is cos2x+2x=8cos4x+1-8cos2x.