What is the integral of tan2x?
Find the integral of tan2x.
Let 2x=u.
So, 2dx=du
Put the above value in∫tan2xdx:
∫tan2xdx=12∫tanudu⇒∫tan2xdx=12ln|secu|+C∵∫tanudu=ln|secu|+C⇒∫tan2xdx=12ln|sec2x|+C{∵u=2x}
Hence, the required integral is ∫tan2xdx=12ln|sec2x|+C where C is a constant.