What is the integration of lnx?
Find integration of lnx.
From integration by parts:
∫uvdx=u∫vdx-∫(∫vdx)dudxdx
Let u=lnx,v=1
To find∫lnxdx, Put u=lnx,v=1 in ∫uvdx=u∫vdx-∫∫vdxdudxdx:
∫lnxdx=lnxx-∫x1xdx∵ddxlnx=1x⇒∫lnxdx=xlnx-∫dx⇒∫lnxdx=xlnx-x+C∵∫dx=x.
Hence, the required integral is ∫lnxdx=xlnx-x+C where C is a constant of integration .
what is the integration of tan x ?
what is the answer of integration of -1 to 2 , |x^3-x| dx ??