The correct option is D 24
Let P and Q be the centre of the two circles respectively and AB be the common chord
The OP⊥AB and bisects AB, i.e, AO=OB
Also, OQ⊥AB
GIven AP=15 cm,AQ=20cm and PQ=25 cm
Let OP=x cm.Then OQ=(25-x)cm
In rt.∠d△AOP,AO2=AP2−OP2=152−x2
In rt. ∠d△AOQ,
AO2=AQ2−OQ2=202−(25−x)2....(ii)
From eq.(i) and(ii)
152−x2=202−(25−x)2
⇒225−x2=400−(625−50x+x2⇒225−x2=400−625+50x−x2
⇒50x=450⇒x=9
∴AO=√152−92=√225−81=√144=12cm(From(i))
⇒AB=2×12cm=24cm