The correct option is A x2+y2+4x−6y−12=0
Let an arbitrary point be P(x,y)
Then the distance of the point P from the point A(−2,3) is
d=√(x+2)2+(y−3)2
d2=(x+2)2+(y−3)2
Now the distance is given to be 5,
Hence
(x+2)2+(y−3)2=25
x2+y2+4x−6y+4+9=25
x2+y2+4x−6y+13=25
x2+y2+4x−6y−12=0.