The new center of mass of the stick-puck system w.r.t. center of stick is
rcm=ms(l/2)ms+mp=m(d/2)m+m=l/4 (given- ms=mp=m)
Before collision , the total angular momentum of the stick-puck system ,
L1=rp+0 (as stick is stationary, hence its angular momentum is zero)
or L1=(l/4)(mvi) ..............eq1
After collision, angular momentum of stick-puck system ,
L2=I′cmω ...............eq2
by law of conservation of angular momentum ,
L2=L1
or I′cmω=(l/4)(mvi)
or ω=(l/4)(mvi)I′cm ........................eq3
where I′cm= moment of inertia of stick-puck system about new center of mass,
I′cm=Is+Ip ,
now , Is=Icm+m(d/4)2 (by parallel axis theorem)
and Ip=m(l/4)2
hence I′cm=Icm+m(l/4)2+m(l/4)2=Icm+m(l2/8)
but Icm=m(l2/12)
therefore I′cm=m(l2/12)+m(l2/8)=m(5l2/24) ................eq4
putting the value of I′cm in eq3 , we get
ω=l/4(mvi)m(5l2/24)=6vi5l