The correct option is D a+b
Equation of ellipse isx2a2+y2b2=1
Let P(acosθ,bsinθ) be a point on the ellipse.Equation of tangent to ellipse at P is xacosθ+ybsinθ=1
So, the tangent intersects X-axis at (asecθ,0) and Y-axis at (0,bcosecθ)
Intercepted portion of tangent between axes is S=√a2sec2θ+b2cosec2θ
For maximum or minimum , dSdθ=0⇒2a2sec2θtanθ−2b2cosec2θcotθ=0⇒tan4θ=b2a2⇒tan2θ=ba
Also, d2Sdθ2>0 for tan2θ=ba
Hence, S attains minimum at tan2θ=ba
Minimum value of S=√a2(1+tan2θ)+b2(1+cot2θ)⇒Smin=√a(a+b)+b(a+b)
Minimum value of S =a+b