What is the ratio of the area of parallelogram ABCD to the sum of areas of ΔABE and ΔABF?
1:1
We can clearly see that
EG = DH = FI --------- (1)
So, the height of the parallelogram ABCD is exactly equal to the heights of Δ ABE and ΔABF.
Also, the base of all the figures is the same i.e. AB.
Area of a parallelogram =base×height
Area of parallelogram ABCD=AB×DH
Area of a Δ=12×base×height
Area of ΔABE=12×AB×EG
Area of ΔABF=12×AB×FI
Area of ΔABE+ Area of ΔABF=[12×AB×EG)]+[12×AB×FI]
=AB×DH [Using equation 1]
Area of ΔABE + Area of ΔABF = Area of parallelogram ABCD
Hence, ratio = 1:1