What is the remainder when 7103 is divided by 50?
7103=7×(49)51
= 7×(50−1)51
7×(50−1)51=7[51C0(50)51−51C1(50)50+51C2(50)49............51C50(50)1−51C51]
7×(50−1)51=7[51C0(50)51−51C1(50)50+51C2(50)49............51C50(50)1−1]
51C0(50)51−51C1(50)50+51C2(50)49............51C50(50)1 is a multiple of 50.We will replace it with 50k
⇒7×(50−1)51=7[50k−1]
⇒7×(50−1)51=7[50k−1−49]+7×49 (we add and subtract 7 * 49)
⇒7×(50−1)51=7[50k−50]+343
⇒7×(50−1)51=7[50k−50]+300+43
The first two terms are multiple of 50.
⇒ The remainder will be 43.