The correct option is A 1
777....(56 digits) = 7 * ( 111.....56 digits)
= 79 * ( 999....56 digits)
= 79 * ( 1000.... 56 0's - 1)
= 79 * ( 1056 - 1)
Now, we shall use Euler's theorem to find the remainder.
Divisor = 19.
So, ϕ(19) = 19 * (1 - 119)
= 18
Rem[5618] = 2
Therefore,
Rem[(79)∗(1056−1)19]=Rem[(79)∗102−119]=Rem[79∗(100−1)19]=Rem[(79)∗9919]=Rem[7719]
= 1