The correct option is D (0,1]∪[9,∞)
Given: f(x)=ax2+(a−3)x+1,a≠0
both zeros of the quadratic polynomials lies only on one side of the Y-axis.
To find: Set of values of a
Step-1: Use D≥0 and solve for a
Step-2: Also solve for a when (i) both roots are negative (ii) Both roots are positive.
Step-3: Find the final set of values of a.
D≥0
⇒(a−3)2−4.a.1≥0
⇒(a−1)(a−9)≥0
⇒a≤1 or a≥9
⇒a∈(−∞,1] or a∈[9,∞)
⇒a∈(−∞,1]∪[9,∞) but a≠0
∴a∈(−∞,1]∪[9,∞)−{0}=A(Say)
Step-2: case (i) Both roots are negative.
−a−3a<0 and 1a>0
⇒a−3a>0 and a>0
⇒a>0 and a−3>0
⇒a>3
⇒a∈(3,∞)=B
Case: (ii) Both roots are positive.
−a−3a>0 and 1a>0
⇒a−3a<0 and a>0
⇒0<a<3
∴a∈(0,3)=C
Range of a, is A∩(B∪C)=(0,1]∪[9,∞)