The correct option is B 13
Product of two natural number will be non negative, so
n2−10n−36≥0⇒n∈ (∞,5−√61] ∪ [5+√61,∞)
As n∈N so n≥13,
Case 1 : 2 digit natural number n
The maximum value of the product of the digits =9×9=81
∴n2−10n−36≤81
⇒n∈ [5−√142,5+√142]
As n∈N so 13≤n<17,
(i) For n=13 product of digits =3
169−130−36=3
Hence it satisfies the relation given.
(ii) For n=14 product of digits =4
196−140−36≠4
relation not satisfied.
(iii) For n=15 product of digits =5
225−150−36≠5
relation not satisfied.
(iv) For n=16 product of digits =6
256−160−36≠6
relation not satisfied.
Case 2 : 3 digit natural number n
The maximum value of product of digits =9×9×9=729
The smallest 3 digit natural number can be =100
∴1002−100×10−36=8964>729
So there is no 3 digit number possible satisfying the relation.
Hence n=13