What is the value of 2.¯¯¯6−1.¯¯¯9
Lets evaluate 2.¯¯¯6
x=2.¯¯¯6
x=2.6666....--(1)
Since, 1 decimal is recurring, multi[ply by 10 on both sides
10x=10×2.666....
⇒10x=26.666.......(2)
(2) − (1)
10x−x=(26.666....)−(2.666....)
⇒9x=24
⇒x=249
⇒2.¯¯¯6=249----(i)
Lets evaluate 1.¯¯¯9
y=1.¯¯¯9
⇒y=1.999.....---(3)
Since, 1 decimal is recurring, multi[ply by 10 on both sides
10y=10×1.999....
⇒10y=19.999.......(4)
(4) − (3)
10y−y=(19.999....)−(1.999....)
⇒9y=18
⇒x=189
⇒x=2
⇒1.¯¯¯9=2 ---(ii)
Now,
2.¯¯¯6−1.¯¯¯9
=249−2
=24−189
=69
=23
=0.666...
=¯¯¯6
∴2.¯¯¯6−1.¯¯¯9=¯¯¯6
Hence, Option A is correct.
(OR)
The value of 2.¯¯¯6−1.¯¯¯9 is
=(2+69)−(1+99)
=2+69−(1+1)
=69=0.¯¯¯6