What is the value of cos2760+cos2160−cos760.cos160?
We have,
=cos276∘+cos216∘−cos76∘.cos16∘
=cos276∘+cos216∘−12×(2cos76∘.cos16∘)
=cos276∘+1−sin216∘−12×(2cos76∘.cos16∘)
=cos276∘−sin216∘+1−12×(2cos76∘.cos16∘)
We know that
cos2A−sin2B=cos(A+B)cos(A−B)
And 2cosA.cosB=cos(A+B)+cos(A−B)
Therefore,
=cos(76∘+16∘)cos(76∘−16∘)+1−12[cos(76∘+16∘)+cos(76∘−16∘)]
=cos(92∘)cos(60∘)+1−12×[cos(92∘)+cos(60∘)]
=12×cos(92∘)+1−12×cos(92∘)−14
=1−14
=34
Hence, the required value is 34.