What is the value of cosπ8?
Find the value of cosπ8.
In the formula cos2A=2cos2A-1,put A=π8:
cos2π8=2cos2π8-1⇒cosπ4=2cos2π8-1⇒12=2cos2π8-1[∵cosπ4=cos45°=12]⇒cos2π8=1+122⇒cos2π8=2+122⇒cosπ8=2+122
Now rationalize the above expression.
cosπ8=2+122×22⇒=2+24⇒=2+22
Hence, the value of cosπ8 is 2+22.
What is the value of
What is the value of (3³)³