⇒∣∣ ∣ ∣∣aa2a3−1bb2b3−1cc2c3−1∣∣ ∣ ∣∣
Apply, C2→C2−C1
⇒∣∣
∣
∣∣aa2−aa3−1bb2−bb3−1cc2−cc3−1∣∣
∣
∣∣
On taking common (a−1)(b−1)(c−1), we get
⇒(a−1)(b−1)(c−1)∣∣
∣
∣∣aaa2+1+abbb2+1+bccc2+1+c∣∣
∣
∣∣
Apply, C1→C1−C2
⇒(a−1)(b−1)(c−1)∣∣
∣
∣∣0aa2+1+a0bb2+1+b0cc2+1+c∣∣
∣
∣∣
⇒0.
R.H.S
Hence, proved.