The correct option is
B 5Given,
3x+116+2x−37=x+38+3x−114.
Taking LCM on both sides, we get,
LCM of 16,7= LCM of 8,14=112.
Then,
⟹ (3x+116×112112)+(2x−37×112112)=(x+38×112112)+(3x−114×112112)
⟹7(3x+1)112+16(2x−3)112=14(x+3)112+8(3x−1)112
⟹ 7(3x+1)+16(2x−3)112=14(x+3)+8(3x−1)112.
Now, cancelling 112 from both sides, we get,
⟹ 7(3x+1)+16(2x−3)=14(x+3)+8(3x−1)
⟹ 21x+7+32x−48=14x+42+24x−8
⟹ 21x+32x−14x−24x=42−8−7+48
⟹ 15x=75
⟹ x=5.
Therefore, option D is correct.