The correct option is C x=−1/12
sin−16x=−π2−sin−16√3x
⇒sinsin−16x=sin(−π2−sin−16√3x)
Now, let sin−16√3x=θ,π2≤θ≤π2
∴sinθ=6√3x,cosθ=√(1−108x2)∴θ=sin−16√3x=cos−1√(1−108x2)
6x=−√(1−108x2), RHS is negative
Therefore x is negative
Squaring 36x2=1−108x2⇒x=±112∴x=−112