The correct option is
D y−12=±1√2x+1.Let P(t,t2) be the parametric co-ordinates of any point on the parabola y=x2.
∴dydx=2x=2t.
Hence the normal at P is
y−t2=−12t(x−t) ...(1)
If it meets the curve again at Q whose parameter is say t' then the point (t′,t′2) will satisfy (1).
∴t′2−t2=−12t(t′−t)
or ∴t′+t=−12t(ast≠t′) ...(2)
∴t′=−t−12t⋅
If l be the length of normal chord, then
z=l2=PQ2=(t−t′)2+(t2−t′2)2
z=(t−t′)2[1+(t+t′)2].
Put for t′ from (2)
∴z=(t+t+12t)2[1+(−12t)2]
or z=(4t2+1)24t2⋅4t2+14t2=(4t2+1)316t4
Now put 4t2=p where p is +ive.
∴z=(p+1)3p2=p+3+3p+1p2
dzdp=1−3p2−2p3=0
or p3−3p−2=0 or (p+1)(p2−p−2)=0
or (p+1)(p+1)(p−2)=0
∴p=2 as p≠−1
d2zdp2=6p3+6p4=+ive for p=2=4t2
Hence z is minimum when t2=12 or t=±1√2
z=l2=(2+1)322=274
∴l=3√32
Hence from (1), the equations of normal are
y−12=±1√2x+1.