The general equation of second degree ax2+2hxy+by2+2gx+2fy+c=0
Represents a pair of straight lines if Δ=abc+2fgh−af2−bg2−ch2=0
For (i)
we have a=a,b=b,h=0,g=c2,f=c2,c=0
Δ=(a×b×0)+(2×c2×c2×0)−(a×c2×c2)−(b×c2×c2)−(0×0×0)=00+0−a.c22−b.c22−0=0ac2+bc2=0c2(a+b)=0
⇒c=0 or a+b=0
For (ii)
we have a=0,b=a,h=b2,g=e2,f=d2,c=0
Δ=(0×a×0)+(2×d2×e2×b2)−(0×d2×d2)−(a×e2×e2)−(0×b2×b2)=0Δ=0+bed4−0−ae24−0=0bed−ae2=0e(bd−ae)=0
⇒e=0 or ae=bd