The correct option is A 48
Given expression,
(4xy+3y)2−(4xy−3y)2
Let (4xy+3y)=a and (4xy−3y)=b
Now applying the formula a2−b2=(a+b)(a−b)
⇒[(4xy+3y)+(4xy−3y)][(4xy+3y)−(4xy−3y)]
⇒[4xy+3y+4xy−3y][4xy+3y−4xy+3y)]
⇒(8xy)(6y)
⇒(48xy2)
So, the coefficient of xy2 is 48.