The correct option is A −1
Say f(x) is divided by g(x) and quotient is h(x) , remainder is r(x),then according to remainder theorem, we have f(x)=g(x)×h(x)+r(x)
Here f(x)=2x3+3x2−4x+k ,g(x)=x+2, r(x)=3
Therefore we get 2x3+3x2−4x+k=h(x)×(x+2)+3
putting x=−2 , we get 2(−8)+3(4)−4(−2)+k=h(x)×(0)+3
⇒ −16+12+8+k=3
⇒ k+4=3
⇒ k=−1