When sin9θcos27θ+sin3θcos9θ+sinθcos3θ=k(tan27θ−tanθ) is defined, then k=
Find the general solutions of the following equations:(i) sin 2θ=√32(ii) cos 3θ=12(iii) sin 9θ=sinθ(iv) sin θ=cos 3θ(v) tan θ+cot 2θ=0(vi) tan 3θ=cot θ(vii) tan 2θ tan θ=1(viii) tan mθ+cot nθ=0(ix) tan pθ=cot qθ(x) sin 2θ+cos θ=0(xi)sin θ=tan θ(xii)sin 3θ+cos 2θ=0