The correct option is C 8463
f(x)=(x+6)4(8−x)3
⇒f′(x)=4(x+6)3(8−x)3−3(x+6)4(8−x)2=7(x+6)3(8−x)2(2−x)=0
⇒x=−6,2,8
⇒f′′(x)=7[−(x+6)3(8−x)2+3(x+6)2(8−x)2(2−x)−2(x+6)3(8−x)(2−x)]
Since, f′′(−6)=0, f′′(8)=0 & f′′(2)=7[−8362]<0
Therefore, f(x) is maximum at x=2
Thus, f(2)=(2+6)4(8−2)3=8463
Ans: C