The correct option is D 144
Let's take a look at each choice one-by-one:
∙ 169––––
169=13×13
⇒169=132
⇒16912=(132)12 (Taking square root both the sides)
⇒16912=132×12(∵(am)n=am×n)
⇒√169=13
Hence, 169 is a perfect square, and 169 is a square of 13 (an odd number).
–––––––––––––––––––––––
∙ 256––––
256=2×2×2×2×2×2×2×2
⇒256=28
⇒256=24×2
⇒256=(24)2 [ ∵am×n=(am)n]
⇒256=162 [ ∵24=2×2×2×2=16 ]
⇒25612=(162)12 (Taking square root both the sides)
⇒25612=162×12(∵(am)n=am×n)
⇒√256=16
Hence, 256 is a perfect square, and 256 is a square of 16 (an even number).
–––––––––––––––––––––––
∙ 900––––
900=2×2×3×3×5×5
⇒900=22×32×52
⇒900=(2×3×5)2 (∵pn×qn×rn=(p×q×r)n)
⇒900=302
⇒90012=(302)12 (Taking square root both the sides)
⇒90012=302×12(∵(am)n=am×n)
⇒√900=30
Hence, 900 is a perfect square, and 900 is a square of 30 (an even number).
–––––––––––––––––––––––
∙ 144––––
144=2×2––––––×2×2––––––×3×3
⇒144=4×4×3×3
⇒144=42×32
⇒144=(4×3)2(∵an×bn=(a×b)n)
⇒144=122
⇒14412=(122)12 (Taking square root both the sides)
⇒14412=122×12(∵(am)n=am×n)
⇒√144=12
Hence, 144 is a perfect square, and 144 is a square of 12 (an even number).
–––––––––––––––––––––––
Therefore, 256, 900 and 144 are the squares of even numbers 16, 30 and 12, respectively.