The correct options are
B (1+i)2n2n+(1−i)2n2n
D 2n(1+i)2n+2n(1−i)2n
(1−i)2n=((1−i)2)n=(1−1−2i)n=(−2i)n=2n×(−i)n
(1+i)2n=((1+i)2)n=(1−1+2i)n=(2i)n=2n×(i)n
Also, −i=−i.ii=1i=i−1
Now from options,
(A) 2n(1−i)2n+(1+i)2n2n
=1(−i)n+(i)n
=in+in=2in
(B) (1+i)2n2n+(1−i)2n2n
=in+(−i)n=in+i−n
(C) (1−i)2n2n+2n(1+i)2n
=(−i)n+1(i)n=i−n+i−n
(D) 2n(1+i)2n+2n(1−i)2n
=1(i)n+1(−i)n=i−n+in