The correct option is A 21/6eπi/12
Let x3=z
Hence the equation we get z2−2z+2=0
z=x3=1+i or z=x3=1−i
By using formula, we get
x3=√2(1+i√2)
x=216ei(2kπ+π4)3, k∈ 0, 1, 2
Hence roots of the x3=1+i is
216eiπ12, 216ei9π12,216ei17π12
Similarly for x3=1−i
Here θ=−π4
and roots are
216e−iπ12, 216ei7π12,216ei15π12
Hence 6 roots of the equation are
216eiπ12, 216ei9π12,216ei17π12,216e−iπ12, 216ei7π12,216ei15π12