(99)50+(100)50
Now
(101)50−10050−9950
(1+100)50−(1−100)50−10050
=2[50C1100+50C3.1003+...50C4910049]−10050
=2[50C1100+50C3.1003+...50C4810048]+50C4910049+50C4910049−10050
=2[50C1100+50C3.1003+...50C4810048]+50C4910049+10049[50−100]
=2[50C1100+50C3.1003+...50C4810048]+50C4910049−50C4910049
=2[50C1100+50C3.1003+...50C4810048]>0
Hence
10150>9950+10050