The correct options are
A Rf=[loge113,∞)
B Df=R
f(x) is defined if 3x2−4x+5≥0
⇒3[x2−43x+53]≥0⇒3[(x−23)2+119]≥0
Which is true for all real x
Domain f(x)=(−∞,∞)
We can clearly see 3x2−4x+5=3[(x−23)2+119]
So the quadratic expression is always ≥113
⇒ Range of the quadratic expression is [113,∞)
∴loge(3x2−4x+5)∈[loge113,∞)