The correct option is D Rf=[loge113,∞)
f(x) is defined if 3x2−4x+5>0
⇒3[x2−43x+53]>0⇒3[(x−23)2+119]>0
Which is true for all real x
Domain of f(x)=(−∞,∞)
We can clearly see 3x2−4x+5=3[(x−23)2+119]
So, the quadratic expression is always ≥113.
⇒ Range of the quadratic expression is [113,∞)
∴loge(3x2−4x+5)∈[loge113,∞)
Range of f(x)=[loge113,∞)