Which of the following can be an alternate representation of variance, where xi being the midpoint of class intervals, fi being frequency of class interval and ¯x the mean,N = ∑ni=1fi
Variance σ2 = 1N(∑ni=1fi(xi−¯x)2 = 1N∑ni=1fi(x2i+¯x2−2¯xxi)
=1N[∑ni=1fix2i+¯x2∑ni=1fi−2¯x∑ni=1fixifi]
=1N[∑ni=1fixi+¯x2N−2¯xN¯x]
Because, 1N∑ni=1xifi=¯x
= 1N∑ni=1fix2i+¯x2−2¯x2 = 1N∑ni=1fix2i−¯x2
= 1N∑ni=1fix2i - (∑ni=1fixi)2N)2
= 1N2[N∑ni=1fix2i−(∑ni=1fixi)2]
∴ option a and b are correct.