The correct options are
A (1a−a)[(1a−a)+3]
C (a−1a)[(a−1a)−3]
⇒(a2+1a2−2−3a+3a)
Group the terms as shown,
⇒(a2+1a2−2)−(3a−3a)
⇒(a−1a)2−3(a−1a)
⇒(a−1a)[(a−1a)−3]
Taking (-1) common from both the terms, we get,
⇒(−1)(−a+1a)(−1)[(−a+1a)+3]
⇒(1a−a)[(1a−a)+3]