The correct option is D 5n+5
Consider: an=2n2–3
a1=2–3=–1
a2=2×22–3=8–3=5
a3=2×32–3=2×9–3=18–3=15
Now, d1=a2–a1=5–(–1)=6
d2=a3–a2=15–5=10
Here, d1≠d2
Thus, this is not an AP.
Consider: an=6n2+1
So, a1=6×12+1=6+1=7
a2=6×22+1=6×4+1=25
a3=6×32+1=6×9+1=55
Now, d1=a2–a1=25–7=18
d2=a3–a2=55–25=30
Here, d1≠d2
Thus, this is not an AP.
Consider: an=1+n+n2
So, a1=1+1+12=3
a2=1+2+22=1+2+4=7
a3=1+3+32=1+3+9=13
Now, d1=a2–a1=7–3=4
d2=a3–a2=13–7=6
Here, d1≠d2
Thus, this is not an AP.
Consider: an=5n+5
a1=5×1+5=5+5=10
a2=5×2+5=10+5=15
a3=5×3+5=15+5=20
Now, d1=a2–a1=15–10=5
d2=a3–a2=20–15=15
Here, d1=d2
Thus, this is an AP.
Hence, the correct answer is option (4).