The correct option is B (3+√5i)
Given: √4+3√−20
⇒√4+6√5i
Let, √4+6√5i=x+iy ...(i)
squaring on both the sides of (i) we get,
4+6√5i=(x+iy)24+6√5i=x2−y2+2xyi ...(ii)
On comparing real and imaginary parts on both sides of (ii), we get
x2−y2=4 and 2xy=6√5
⇒x2−y2=4 and xy=3√5
⇒x2+y2=√(x2−y2)2+4x2y2=√(4)2+4(3)25
⇒x2+y2=√196=14
⇒x2−y2=4 and x2+y2=14
⇒x2=9 and y2=5
⇒x=+3,−3 and y=+√5,−√5
Since xy>0, so x and y are of the same sign
∴ (x=3,y=√5) or (x=−3,y=−√5)
Hence, √4+3√−20=(3+√5i) or (−3−√5i)