The correct option is D π/2∫0(ln(secx))(eln(ln2))−1 dx
Let I1=π∫0dx1+(sinx)cosx ⋯(1)
∴I1=π∫0dx1+(sinx)−cosx ⋯(2)
On adding the above equations, we get
2I1=π∫01 dx
⇒I1=π2
Let I2=π/2∫0dx1+(tanx)5 ⋯(1)
∴I2=π/2∫0dx1+(cotx)5 ⋯(2)
On adding the above equations, we get
2I2=π/2∫01 dx
⇒I2=π4
Let I3=∞∫0x2+1x4−x2+1 dx
=∞∫01+1x2x2+1x2−1 dx
Put x−1x=t⇒(1+1x2)dx=dt
So, I3=∞∫−∞dtt2+1 dx=2(tan−1t)∞0=π
⇒I3=π
Let I4=π/2∫0ln(secx)ln2 dx
=−1ln2π/2∫0ln(cosx) dx
=−1ln2(−π2ln2)=π2