The correct options are
A x2−3x−54
B x(2x−1)−1
1. x2−3x−54
Comparing the given expression with ax2+bc+c, we get
a=1,b=−3,c=−54
⇒b2−4ac=(−3)2−4(1)(−54)
=9+216
=225
225 is a perfect square.
∴x2−3x−54 is factorizable.
2. x(2x−1)−1
⇒2x2−x−1
Comparing the given expression with ax2+bc+c, we get
a=2,b=−1,c=−1
⇒b2−4ac=(−1)2−4(2)(−1)
=1+8
=9
9 is a perfect square.
∴x(2x−1)−1 is factorizable.
3. 3x2+4x−10
Comparing the given expression with ax2+bc+c, we get
a=3,b=4,c=−10
⇒b2−4ac=(3)2−4(3)(−10)
=9+120
=129
129 is not a perfect square.
∴x2−3x−54 is not factorizable.
4. 2x2+2x−75
Comparing the given expression with ax2+bc+c, we get
a=2,b=2,c=−75
⇒b2−4ac=(2)2−4(2)(−75)
=4+600
=604
604 is not a perfect square.
∴2x2+2x−75 is not factorizable.