The correct option is D b2sin2C+c2sin2B
Given : rs+r1(s−a)+r2(s−b)+r3(s−c)
We know that
r=Δs;r1=Δs−a;r2=Δs−b;r3=Δs−c
So, rs+r1(s−a)+r2(s−b)+r3(s−c)=4Δ
(a+b+c)2cotA2+cotB2+cotC2
We know that
tanA2=Δs(s−a)
So, cotA2+cotB2+cotC2
=s[(s−a)+(s−b)+(s−c)]Δ=s2Δ
Now, (a+b+c)2cotA2+cotB2+cotC2
=4s2s2Δ=4Δ
(a2+b2−c2)tanB
Using a2+b2−c2=2abcosC, we get
(a2+b2−c2)tanB=2abcosCsinBcosB≠4Δ
b2sin2C+c2sin2B
Using sine rule, i.e. bsinB=csinC, we get
b2sin2C+c2sin2B=2b2sinCcosC+2c2sinBcosB=2bcsinBcosC+2cbsinCcosB=2bcsin(B+C)=2bcsinA (∵B+C=π−A)=4Δ