The correct options are
A f(x,y)=x−yx2+y2
B f(x,y)=x13y−23tan−1(xy)
C f(x,y)=x(ln√x2+y2−lny)+yexy
Substitute kx and ky in place of x and y.
i. f(kx,ky)=kx−kyk2x2+k2y2=k−1(x−yx2+y2) =k−1f(x,y)
ii. f(kx,ky)=(kx)13 (ky)−23tan−1kxky = k(13−23)x13y−23tan−1(xy) =k(−13)x13y−23tan−1(xy) =k(−13)f(x,y)
iii. f(kx,ky)=kx(ln√(kx)2+(ky)2−lnky)+kyekxky= kx(ln√(kx)2+(ky)2ky)+kyekxky= kx(lnk√x2+y2ky)+kyexy (because k>0)=kx(ln√x2+y2y)+kyexy =k (x(ln√x2+y2−lny)+yexy)=k f(x,y)iv. f(kx,ky)=kx(ln2(kx)2+(ky)2kx−ln(kx+ky)]+(ky)2tan(kx+2ky3kx−ky)=kx(lnk(2x2+y2)x−ln(kx+ky)] + (ky)2tan(x+2y3x−y) =kx(lnk(2x2+y2)x(kx+ky)] + (ky)2tan(x+2y3x−y)=kx(ln(2x2+y2)x(x+y)] + (ky)2tan(x+2y3x−y)=kx(ln(2x2+y2x)−ln(x+y)] + (ky)2tan(x+2y3x−y)This cannot be expressed in the desired form.