The correct options are
A cosx B cos2xA function
f(x) is said to be strictly decreasing
on (a,b) if f′(x)<0 for all x∈(a,b)
Option A
f(x)=cosx
f′(x)=−sinx
For x∈(0,π2), sinx is positive
i.e. sinx>0 for x∈(0,π2)
−sinx<0 for x∈(0,π2)
⇒f′(x)<0 for x∈(0,π2)
Hence, f(x)=cosx is strictly decreasing on (0,π2)
Option B,
f(x)=cos2x
f′(x)=−2sin2x
Since, 0<x<π2
⇒0<2x<π
We know that sint>0 for t∈(0,π)
So, sin2x>0 for 2x∈(0,π)
So, sin2x>0 for x∈(0,π2)
⇒−2sin2x<0 for x∈(0,π2)
⇒f′(x)<0 for x∈(0,π2)
Hence, f(x)=cos2x is strictly decreasing on (0,π2)
Option C,
f(x)=cos3x
f′(x)=−3sin3x
Since, 0<x<π2
⇒0<3x<3π2
⇒3x∈(0,π)∪π∪(π,3π2)
We know that sint>0 for t∈(0,π) and sint<0 for t∈(π,3π2)
So, sin3x>0 for 3x∈(0,π) and sin3x<0 for 3x∈(π,3π2)
−3sin3x<0 for x∈(0,π3) and −3sin3x>0 for 3x∈(π,3π2)
Hence, f(x) is strictly decreasing in x∈(0,π3) and increasing in (π3,π2)
Hence, f(x)=cos3x is not strictly decreasing on (0,π2)
Option D,
f(x)=tanx
f′(x)=sec2x
For 0<x<π2, sec2x>0
⇒f′(x)>0
Hence, f(x) is strictly increasing on (0,π2)