The correct options are
A f(x)=logeex
B g(x)=|x|sgnx
D k(x)=limn→∞2|x|π⋅tan−1(nx)
(a) f(x)=logeex=x⋅logee=x
(b) g(x)=|x|sgnx
=⎧⎨⎩|x|⋅x|x|,x≠00,x=0={x,x≠00,x=0
∴g(x)=x,
Which is same as f(x).
(c) h(x)=cot−1(cotx) equal to x only when x∈(0,π),
Which is not same as f(x) and g(x).
(d) k(x)=limn→∞2|x|π⋅tan−1(nx)
=⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩2xπ⋅π2x>0−2xπ⋅−π2,x<00,x=0
=⎧⎪⎨⎪⎩x,x>0x,x<00,x=0
∴k(x)=x for all x.
Hence, (a), (b) and (d) are the correct answers.