The correct options are
A a4+b4+c4>abc(a+b+c)
B a5+b5+c5+d5>abcd(a+b+c+d)
C a5+b5+c5>abc(ab+bc+ca)
D a8+b8+c8a3b3c3>1a+1b+1c
(a), (b), (c), (d)
(a) a4+b4+c43>(a+b+c3)4
or (a+b+c3)(a+b+c3)3>a+b+c3[(abc)13]3;
∵A.M.>G.M.
or >(a+b+c3)
∴a4+b4+c4>abc(a+b+c)
(b) As above
(c) (a5+b5+c53)>(a+b+c3)5
or >(a+b+c3)3(a+b+c3)2
or >[(abc)13]3(a2+b2+c2+2ab+2bc+2ca9)
But we know that a2+b2+c2>ab+bc+ca by result of two by two rule.
∴a5+b5+c53>abc3(ab+bc+ca)9 etc.
(d) a8+b8+c8>a2b2c2(bc+ca+ab)
Now a8+b8+c83>(a+b+c3)8
or >(a+b+c3)6(a+b+c3)2>[(abc)13]6[a2+b2+c2+2ab+2bc+2ca9]
∵A.M.>G.M
But by two by two rule
a2+b2+c2>ab+bc+ca
∴a8+b8+c83>a2b2c2(3ab+3bc+3ca)9
∴a8+b8+c8>a2b2c2(ab+bc+ca)
or a8b8c8a3b3c3>ab+bc+caabc or >1a+1b+1c
(e) b2+c22>(b+c2)2∴b2+c2b+c>b+c2
Write similar inequalities and add.