The correct option is D 1∫0x2sinx dx≥29
(A)
Expansion of cosx=1−x22!+x44!⋯
∴cosx≥1−x22!
Multiply x both side
xcosx≥x−x22!
Integrating both side
1∫0xcosx dx≥1∫0(x−x32) dx
1∫0xcosx dx≥(x22−x48)10
1∫0xcosx dx≥12−18
1∫0xcosx dx≥38
Similarly
(B) Expansion of sinx=x−x33!+x55!+⋯
sinx≥x−x33!
Multiply x both side
xsinx≥x2−x46
Integrating both side
1∫0xsinx dx≥1∫0(x2−x46) dx
1∫0xsinx dx≥(x33−x56⋅5)10
1∫0xsinx dx≥(x33−x530)10
1∫0xsinx dx≥13−130
1∫0xsinx dx≥310
(C)cosx<1
Multiply x2 both side
x2cosx<x2
Integrating both side
1∫0x2cosx dx<1∫0x2 dx
1∫0x2cosx dx<13
(D)
1∫0x2sinx dx≥1∫0x2(x−x36) dx
1∫0x2sinx dx≥(x44−x636)10
1∫0x2sinx dx≥14−136
1∫0x2sinx dx≥29