The correct option is B (8, 15, 17)
There can be infinite pythagorean triplets. But we are to check the given four triplets.
Let's check them one-by-one to check which ones are the pythagorean triplets and which ones are not.
a) (4, 8, 10)
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
42 +
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
82 = 16 + 64 = 80 ≠
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
102
Therefore, (4, 8, 10) is not a yhtagorean triplet.
b) (8, 15, 17)
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
82 +
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
152 = 64 + 225 = 289 =
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
172
Therefore, (8, 15, 17) is a Pythagorean triplet.
c) (7, 24, 27)
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
72 +
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
242 = 49 + 576 = 625 =
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
252
Therefore, (7, 24, 27) is not a Pythagorean triplet but (7, 24, 25) is one of the Pythagorean triplets.
d) (7, 10, 15)
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
72 +
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
102 = 49 + 100 = 149 ≠
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
152
Therefore, (7, 10, 15) is also not a Pythagorean triplet.