wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Which of the following is an irrational number?

i) 23

ii) 0.143¯¯¯¯¯¯32

iii) 5.¯¯¯¯¯¯46

iv) 5


A

Only iv

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

ii and iii

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

i and iv

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

Cannot be determined

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

i and iv


i) 23 is product of 2 and 3. We know that 3 is an irrational number and cannot be expressed in the form of pq where p and q are integers and q0. When we multiply a rational number with an irrational number, the result is an irrational number. Therefore, 23 is an irrational number.

ii) 0.143¯¯¯¯¯¯32 is a recurring decimal
Let x=0.143¯¯¯¯¯¯32. In this case we see that 143 does not repeat itself but the block 32 repeats itself. Since, three digits are not repeating, we multiply x by 1000 to get

1000x=143.323232323232...100000x=14332.3232..
Substracting the two equations we get,
99000x=14159x=1415999000

which is in the form of pq where p and q are integers and q0. Hence, it is a rational number.

iii) 5.¯¯¯¯¯¯46 is again a recurring decimal.
Let x=5.464646464646...100x=546.¯¯¯¯¯¯46

Subtracting the two equations, we get,
99x=541

Therefore, x=54199

which is in the form of pq where p and q are integers and q0.Hence, it is a rational number.

iv) 5 We know that 5 is an irrational number since it cannot be represented in the form of pq where p and q are integers and q0. Its value is 2.23606797749979... which is a non-terminating and non-recurring decimal which is the very definition of an irrational number.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Number Systems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon