The correct option is D |sinx|cosx+sinx|cosx|→2π
If f(x), g(x) are complementary even functions, then period of f(x)±g(x) is
12(L.C.M of period of f(x), period of g(x))
And |sinx|,|cosx| are complementary function.
(a) We know that the fundamental period of |sinx| and |cosx| is π.
Now, the period of
|sinx∣+∣cosx∣→12(L.C.M(π,π))=π2
So, the period of 1|sinx|+|cosx|→π2
(b) |sinx+cosx|=√2|sin(45°+x)|
So, the period of √2|sin(45°+x)| is π,
Therefore, the period of
|sinx+cosx|→π
(c) The period of |sinx±cosx| is π.
∵|sinx+cosx∣+∣sinx−cosx| are complementary functions.
∴ Period of |sinx+cosx∣+∣sinx−cosx∣
=12(L.C.M(π,π))=π2
(d) Period of |sinx|cosx=L.C.M.(π,2π)=2π
Period of sinx|cosx|=L.C.M.(2π,π)=2π
∴ Period of |sinx|cosx+sinx|cosx|=L.C.M.(2π,2π)=2π