The correct options are
A 1|sinx|+|cosx|→π/2
B |sinx+cosx|→π
D |sinx|cosx+sinx|cosx|→2π
If f(x),g(x) are complementary even functions, then period of f(x)±g(x) is
12(L.C.M of period of f(x), period of g(x)
and |sinx|,|cosx| are complementary function because
∣∣∣sin(π2±x)∣∣∣=|cosx|
and ∣∣∣cos(π2±x)∣∣∣=|sinx|
also |sin(−x)|=|sinx| and |cos(−x)|=|cosx|
hence |sinx| and |cosx| are even function.
(a) We know that the fundamental period of |sinx| and |cosx| is π
Now,
The period of
|sinx∣+∣cosx∣→12(L.C.M(π,π))=π2
So the period of
1|sinx|+|cosx|→π/2
(b) |sinx+cosx|=√2|sin(45°+x)|
So, the period of √2|sin(45°+x)| is π,
Therefore, the period of
|sinx+cosx|→π
(c)The period of |sinx±cosx| is π
∵|sinx+cosx∣+∣sinx−cosx| are complementary functions.
∴ period of |sinx+cosx∣+∣sinx−cosx∣
=12(L.C.M(π,π))=π2
(d) period of |sinx|cosx=L.C.M.(π,2π)=2π
period of sinx|cosx|=L.C.M.(2π,π)=2π
∴ period of |sinx|cosx+sinx|cosx|=L.C.M.(2π,2π)=2π