wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Which of the following is/are correct regarding their fundamental period?

A
1|sinx|+|cosx|π/2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|sinx+cosx|π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
|sinx+cosx|+|sinxcosx|3π/2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|sinx|cosx+sinx|cosx|2π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A 1|sinx|+|cosx|π/2
B |sinx+cosx|π
D |sinx|cosx+sinx|cosx|2π
If f(x),g(x) are complementary even functions, then period of f(x)±g(x) is
12(L.C.M of period of f(x), period of g(x)
and |sinx|,|cosx| are complementary function because
sin(π2±x)=|cosx|
and cos(π2±x)=|sinx|
also |sin(x)|=|sinx| and |cos(x)|=|cosx|
hence |sinx| and |cosx| are even function.

(a) We know that the fundamental period of |sinx| and |cosx| is π
Now,
The period of
|sinx+cosx12(L.C.M(π,π))=π2
So the period of
1|sinx|+|cosx|π/2

(b) |sinx+cosx|=2|sin(45°+x)|
So, the period of 2|sin(45°+x)| is π,
Therefore, the period of
|sinx+cosx|π

(c)The period of |sinx±cosx| is π
|sinx+cosx+sinxcosx| are complementary functions​.
period of |sinx+cosx+sinxcosx
=12(L.C.M(π,π))=π2


(d) period of |sinx|cosx=L.C.M.(π,2π)=2π
period of sinx|cosx|=L.C.M.(2π,π)=2π
period of |sinx|cosx+sinx|cosx|=L.C.M.(2π,2π)=2π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon