The correct option is D (−2, 2)
We have,log3 (x2−2)<log3 (32∣∣x∣∣−1)For log3 (x2−2) and 32∣∣x∣∣−1 to be defined, we must have (x2−2)>0 and 32∣∣x∣∣−1>0⇒x<−√2 or x>√2 and ∣∣x∣∣>23......[1]Also, log3 (x2−2)<log3 (32∣∣x∣∣−1)⇒(x2−2)<(32∣∣x∣∣−1)⇒2x2−3∣∣x∣∣−2<0⇒2∣∣x∣∣2−3∣∣x∣∣−2<0⇒(2|x|+1)(|x|−2)<0⇒∣∣x∣∣<2 ⇒−2<x<2 ....[2]From [1] and [2] we getx∈(−2, −√2)∪(√2, 2)