The correct option is B (a∧b)→(b∨c)
(a)
(a∨b)→(b∧c)
≡(a+b)′+bc
≡ a′b′ +bc
Therefore, ((a∨b)→(b∧c)) is contingency and not tautology.
(b)
(a∧b)→(b∨c)
≡ab→b+a
≡(ab)′+b+c
≡a′+b′+b+c
≡a′+1+c
≡1
So ((a∧b)→(b∨c)) is tautology.
(c)
(a∨b)→(b→c)
≡(a+b)→(b′+c)
≡(a+b)′+b′+c
≡a′+b′+b′+c
≡b′+c
So ((a∨b)→(b→c)) is contingency but not tautology.
(d)
((a→b)→(b→c))
≡(a′+b)→(b′+c)
≡(a′+b)′+b′+c
≡ab′+b′+c
≡b′+c
Therefore,((a→b )→(b→c)) is contingency but not tautology.