The correct option is C 9+√576
The given equation is (x−1)(x−2)(3x−1)(3x−2)=8x2.
This equation can be rearranged to as:
(x−1)(3x−2)(x−2)(3x−1)=8x2,
⇒(3x2−5x+2)(3x2−7x+2)=8x2
Dividing the equation by x2, we get:
⇒(3x−5+2x)(3x−7+2x)=8
Assuming 3x+2x=t
⇒(t−5)(t−7)=8
t2−12t+35=8
⇒t2−12t+27=0
⇒(t−9)(t−3)=0
⇒t=3,9
Case 1: 3x+2x=3
⇒3x2+2−3x=0
⇒3x2−3x+2=0
D=(−3)2−4(3)(2)
D=9−24<0⇒ No real roots
Case 2: 3x+2x=3
⇒3x2−9x+2=0
D=(−9)2−4(3)(2)
=81−24=57⇒ Real and distinct roots
⇒x=9±√576 are the roots.